Design of a nickel-base superalloy using a neural network
نویسندگان
چکیده
A new computational tool has been developed to model, discover, and optimize new alloys that simultaneously satisfy up to eleven physical criteria. An artificial neural network is trained from pre-existing materials data that enables the prediction of individual material properties both as a function of composition and heat treatment routine, which allows it to optimize the material properties to search for the material with properties most likely to exceed a target criteria. We design a new polycrystalline nickel-base superalloy with the optimal combination of cost, density, γ′ phase content and solvus, phase stability, fatigue life, yield stress, ultimate tensile strength, stress rupture, oxidation resistance, and tensile elongation. Experimental data demonstrates that the proposed alloy fulfills the computational predictions, possessing multiple physical properties, particularly oxidation resistance and yield stress, that exceed existing commercially available alloys.
منابع مشابه
Design of a creep resistant nickel base superalloy for power plant applications. Part 2 - Phase diagram and segregation simulation
Models have been developed and used as tools to design a new `made to measure’ nickel base superalloy for power plant applications. In Part 1 Gaussian processes were used to model the mechanical properties of superalloys, and have been used as a basis for the design of a new Ni ± Cr ± W ± Al ± Ti ± Fe ± Si ± C ± B superalloy with desirable properties. In this part, an attempt has been made to d...
متن کاملEFFECTS OF THE HARDENED NICKEL COATING ON THE FATIGUE BEHAVIOR OF CK45 STEEL: EXPERIMENTAL, FINITE ELEMENT METHOD, AND ARTIFICIAL NEURAL NETWORK MODELING
Hardened nickel coating is widely used in many industrial applications and manufacturing processes because of its benefits in improving the corrosion fatigue life. It is clear that increasing the coating thickness provides good protection against corrosion. However, it reduces the fatigue life. Thus, applying a thin layer of coated nickel might give an acceptable corrosion protection with minim...
متن کاملEffect of bonding time on microstructure and mechanical properties during TLP bonding of nickel-base superalloys Hastelloy C276 and Stainless Steel AISI316
Joining of Hastelloy C276 nickel-base superalloy to AISI316 Stainless Steel using BNi-2 interlayer performed by transient liquid phase process (TLP) at 1150°C for 5 and 30 minutes. Bonding microstructure was studied using an Optical microscope and a scanning electron microscope (SEM). Vickers hardness test and shear strength test have been used to evaluate the mechanical properties. Microstruct...
متن کاملEffect of bonding time on microstructure and mechanical properties during TLP bonding of nickel-base superalloys Hastelloy C276 and Stainless Steel AISI316
Joining of Hastelloy C276 nickel-base superalloy to AISI316 Stainless Steel using BNi-2 interlayer performed by transient liquid phase process (TLP) at 1150°C for 5 and 30 minutes. Bonding microstructure was studied using an Optical microscope and a scanning electron microscope (SEM). Vickers hardness test and shear strength test have been used to evaluate the mechanical properties. Microstruct...
متن کاملNickel-based Superalloy Layer Deposited on AISI H13 Hot Tool Steel Base Metal Using Explosion Cladding process
An experimental test was carried out to explosively clad solution annealed Inconel 718 superalloy on quench-tempered AISI H13 hot tool steel. A wavy with vortices interface geometry was obtained from this experiment. A gradual change in the wavelength along the direction of welding was observed which was due to a change in the impact angle, following the plate contacts. In this paper, the exper...
متن کامل